Indirect Vector Control of a DFIG Supplied by a Two-level FSVM Inverter for Wind Turbine System

Indirect vector control of a DFIG supplied by a two-level FSVM inverter for WTS

  • Habib Benbouhenni 1- Laboratoire d’Automatique et d’Analyse des Systèmes (LAAS), Departement de Génie Électrique, Ecole Nationale Polytechnique d’Oran Maurice Audin, Oran, Algeria.
  • Zinelaabidine Boudjema 2- Laboratoire Génie Électrique ET Energies Renouvelables (LGEER), Electrical Engineering Department, Hassiba Benbouali University, Chlef, Algeria.
  • Abdelkader Belaidi Laboratoire d’Automatique et d’Analyse des Systèmes (LAAS), Departement de Génie Électrique, Ecole Nationale Polytechnique d’Oran Maurice Audin, Oran, Algeria
Keywords: Doubly Fed Induction Generator, Wind Turbine, PWM, SVM, Fuzzy Logic, THD

Abstract

Doubly fed induction generator (DFIG) is one of the most popular generators used nowadays in wind turbine systems (WTSs). This machine has some interesting advantages especially in variables speed applications. In the DFIG-based WTS, the rotor side of the machine is normally fed by a two-level power inverter controlled by the usual pulse width modulation (PWM) technique. This last has a principal disadvantages which is the high level of harmonic distortion. In this paper, we propose a novel technique based on space vector modulation (SVM) and fuzzy logic in order to performs the power provided by the DFIG to the grid. Simulation results show the efficiency of the proposed technique especially on the quality of the provided power comparatively to the usual PWM

References

REFERENCES
[1] D. Campos-Gaona, E. L. Moreno-Goytia, O. Anaya-Lara, “Fault ride-through improvement of DFIG-WT by integrating a two-degrees-of-freedom internal model control,” IEEE T Ind Electron, Vol. 60, pp. 1133-1145, 2013.
[2] T. Karaipoom, I. Ngamroo, “Optimal superconducting coil integrated into DFIG wind turbine for fault ride through capability enhancement and output power fluctuation suppression,” IEEE T Sustain Energ, Vol. 6, pp. 28-42, 2014.
[3] Y. Bekakra, D. Ben Attous, “Comparison Study between SVM and PWM Inverter in Sliding Mode Control of Active and Reactive Power Control of a DFIG for Variable Speed Wind Energy,” International Journal Of Renewable Energy Research, Vol. 2, No. 3, 2012.
[4] A. Jidin, T. Sutikno, “MATLAB/SIMULINK based analysis of voltage source inverter with space vector modulation,” TELKOMNIKA, Vol. 7, No. 1, pp. 23-30, 2009.
[5] A. Medjber, A. Moualdia, A. Mellit, M. A. Guessoum, « Comparative study between direct and indirect vector control applied to a wind turbine equipped with a double-fed asynchronous machine Article, » International Journal of Renewable Energy Research, Vol. 3, No. 1, pp. 88-93, 2013.
[6] N. Khemiri, A. Khedher, M. F. Mimouni, « Wind energy conversion system using DFIG controlled by backstepping and sliding mode strategies, » International Journal of Renewable Energy Research, Vol. 2, No.3, pp. 422-435, 2012.
[7] S. A. Nowdeh, M. Chitsaz, S. Khanabdal,«Evaluation of 1-phase, 3-phase and hightning faults on wind frams using EMTP-RV, » Majlesi Journal of Electrical Engineering, Vol. 8, No. 1, pp. 53-61, 2014.
[8] A. Nazari, H. Heydari,«Direct power control topologies for DFIG-based wind plants, » International Journal of Computer and Electrical Engineering, Vol. 4, No.4, pp. 475-479, 2012.
[9] A. Fekik, H. Denoun, N. Benamrouche, N. Benyahia, M. Zaouia, « A Fuzzy –Logic Based Controller For Three Phase PWM Rectifier With Voltage Oriented Control Strategy, » International Journal Of Circuits, Systems And Signal Processing, Vol. 9, pp. 412-419, 2015.
[10] S. Massoum, A. Meroufel, B. E. Youcefa, A. Massoum, P. Wira, « Three-level NPC converter-basedneuronal direct active and reactive power control of the doubly fed induction machine for wind energy generation, » Majlesi Journal of Electrical Engineering, Vol. 11, No. 3, pp. 25-32, 2017.
[11] F. Senani, A. Rahab, H. Benalla, « Modeling and control of active and reactive powers of wind energy conversion system in variable speed based on DFIG, » Revue des Energy Renouvelables, Vol. 18, No.4, pp. 643-655, 2015.
[12] Z. Boudjema, R. Taleb, Y. Djerriri, A. Yahdou, « A novel direct torque control using second order continuous sliding mode of a doubly fed induction generator for a wind energy conversion system, » Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 25, pp. 965-975, 2017.
[13] R. Pourebrahim, S. Tohidi, A. Younesi,« Sensorless model reference adaptive control of DFIG by using high frequency signal injection and fuzzy logic control, » Iranian Journal of Electrical and Electronic Engineering, Vol. 14, No.1, pp. 11-21, 2018.
[14] K. Kerrouche, A. Mezouar, Kh. Belgacem, « Decoupled control of doubly fed induction generator by vector control for wind energy conversion system, » Energy Procedia, Elsevier, Vol. 42, pp. 239-248, 2013.
[15] S. P. Singh, B. L. Narasimharaju, N. R. Kumar,«Performance analysis of AC-DC power converter using PWM techniques, » Energy Procedia, Elsevier, Vol. 14, pp. 880-886, 2012.
[16] S. Massoum, A. Meroufel, A. Massoum, P. Wira, « A direct power control of the doubly-fed induction generator based on the SVM strategy, » Elektrotehniski Vestnik, Vol. 45, No.5, pp. 235-240, 2017.
[17] M. Gaballah, M. El-Bardini, «Low cost digital signal generation for driving space vector PWM inverter, » Ain Shams Engineering Journal, Vol. 4, pp. 763-774, 2013.
[18] J. Lyu, W. Hu, F. Wu, K. Yao, J. Wu, « A new DPWM method to suppress the low frequency oscillation of the neutral-point voltage for NPC three-level inverters, » Journal of Power Electronics, Vol. 15, No.5, pp. 1207-1216, 2015.
[19] Z. B. Ibrahim, Md. L. Hossain, I. B. Bugis, N. M. N. Mahadi, A. S. Abu Hasim, « Simulation investigation of SPWM, THIPWM and SVPWM techniques for three phase voltage source inverter, » International Journal of Power Electronics and Drive System, Vol. 4, No.2, pp. 223-232, 2014.
[20] A. Kavousi, B. Vahidi, R. Salehi, M. K. Bakhshizadah, N. Forokhnia, S. H. Fathi, «Application of the bee algorithm for selective harmonic elimination strategy in multilevel inverter, » IEEE transactions on power Electronics, Vol. 27, No.4, pp. 1689-1696, 2012.
[21] F. Chabni, R. Taleb, M. Helaimi, «Differential evolution based SHEPWM for seven-level inverter with non-equal DC source, » International Journal of Advanced Computer Science and Applications, Vol. 7, No. 9, pp. 304-311, 2016.
[22] N. V. Kumar, V. K. Chinnaiyan, M. Pradish, S. P. Karthikeyan, « Simulated annealing based selective harmonic elimination for multi-level inverter, » Energy Procedia, Elsevier, Vol. 117, pp. 855-861, 2017.
[23] C. Aghion, O. Ursaru, «Three-phase inverter controlled by ISCPWM and DPWM-S1, » Electronics and Electrical Engineering, Vol. 3, pp. 87-90, 2012.
[24] H. Obdan, M. C. Ozkilic, « Performance comparison of 2-level and 3-level converters in a wind energy conversion system, » Rev. Roum. Sci. Techn.-Electrotechn. et Energ, Vol. 61, No. 4, pp. 388-393, 2016.
[25] E. E. M. Mohamed, M. A. Sayed, « Matrix converters and three-phase inverters fed linear induction motor drives-performance compare, » Ain Shams Engineering Journal, Vol. 2, pp. 1-12, 2016.
[26] N. Mekkaoui, M. Naït-Saïd, « Direct s-power control for a doubly fed induction generator, » Rev. Roum. Sci. Techn.-Electrotechn. Et Energ, Vol. 62, No. 4, pp. 365-370, 2017.
[27] A. Boumediène, L. Abdellah, «A novel sliding mode fuzzy control based on SVM for electric vehicles propulsion system, » ECTI Transactions on Electrical Eng., Electronics and Communications, Vol. 10, No. 2, pp. 153-163, 2012.
[28] S. Allirani, V. B. T. Raaj, « Development of space vector pulse width modulation algorithm for voltage source inverter using dsPIC controller 30F4011, » International Journal of Pure and Applied Mathematics, Vol. 114, No. 9, pp. 257-269, 2017.
[29] A. Saritha, T. Abhiran, DR. K. Sumanth, « Space vector pulse width modulation for two level inverter, » International Journal of Professional Engineering Studies, Vol. 6, No. 3, pp. 8-14, 2016.
[30] M. H. Reddy, T. B. Reddy, B. R. Reddy, M. S. Kalavathi, « Generalized PWM technique for dual inverter fed induction motor drive, » Acta Electrotechnica et Informatica, Vol. 14, No. 1, pp. 28-36, 2014.
[31] Y. Guo, H. Long, « Self organizing fuzzy sliding mode controller for the position control of a permanent magnet synchronous motor drive, » Ain Shams Engineering Journal, Vol. 2, pp. 109-118, 2011.
[32] A. G. Aissaoui, A. Tahour, M. Abid, N. Essounbouli, F. Nollet,« Power control of wind turbine based on fuzzy controllers, » Energy Procedia, Elsevier, Vol. 42, pp. 163-172, 2013.
[33] Z. Boudjema, R. Taleb, A. Yahdou, A. Bouyekni, « Fuzzy second order sliding mode control of a doubly-fed induction machine supplied by to matrix converters, » Journal of Electrical Engineering, Vol. 15, No. 3, pp. 1-10, 2015.
[34] A. Bakouri, H. Mahmoudi, A. Abbou, « Intelligent control for doubly fed induction generator connected to the electrical network, » International Journal of Power Electronics and Drive System, Vol. 7, No. 3, pp. 688-700, 2016.
Published
2018-06-03
How to Cite
Benbouhenni, H., Boudjema, Z., & Belaidi, A. (2018). Indirect Vector Control of a DFIG Supplied by a Two-level FSVM Inverter for Wind Turbine System. Majlesi Journal of Electrical Engineering, 13(1), 45-54. Retrieved from http://www.mjee.org/index/index.php/ee/article/view/2693
Section
Articles